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1. Introduction

1965 is an important year in the history of General Relativity (GR), which underwent

a very important revival period during the entire 1960 decade. The discovery and

interpretation of the Cosmic Background Radiation [257, 91] and the first modern

singularity theorem [248] were published in 1965 —though both findings happened in

1964— a year not only right in the middle of that decade, but also exactly 50 years after

the birth of Einstein’s field equations

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (1)

hence half way to the present centenary.‡ In this article we review the history, impact

and legacy of the Penrose singularity theorem, one of our selected “milestones of General

Relativity”, which was a key contribution to the renaissance of the theory.

The acclaimed singularity theorems are often quoted as one of the greatest theo-

retical accomplishments in General Relativity, Lorentzian geometry and Mathematical

Physics. Even though there were several results proving singularities prior to [248] —and

‡ To be historically faithful, version (1) of the field equations only came about one year later when the

cosmological constant Λ was introduced in [97].
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these will be discussed in sections 2 and 3— Penrose’s theorem is, without a doubt, the

first such theorem in its modern form containing new important ingredients and fruitful

ideas that immediately led to many new developments in theoretical relativity, and to

devastating physical consequences concerning the origin of the Universe and the collapse

of massive stars, see sections 5 and 6. In particular, Penrose introduced geodesic incom-

pleteness to characterize singularities (see subsection 4.1), used the notion of a Cauchy

hypersurface (and thereby of global hyperbolicity, see section 4) and, more importantly,

he presented the gravitational community with a precious gift in the form of a novel

concept: closed trapped surfaces, see subsections 4.2 and 7.2.

The fundamental, germinal and very fruitful notion of closed trapped surface is a key

central idea in the physics of Black Holes, Numerical Relativity, Mathematical Relativity,

Cosmology and Gravity Analogues. It has had an enormous influence as explained

succinctly in section 5 and, in its refined contemporary versions –see subsections 7.2 and

7.3–, keeps generating many more advances (sections 7 and 8) of paramount importance

and will probably maintain such prolific legacy with some unexpected applications in

gravitational physics.

As argued elsewhere [288], the singularity theorems constitute the first genuine

post-Einstenian content of classical GR, not foreseen in any way by Einstein —as

opposed to many other “milestones” discussed in this issue.§ The global mathematical

developments needed for the singularity theorems, and the ideas on incompleteness or

trapping —and thus also their derived inferences — were not treated nor mentioned,

neither directly nor indirectly, in any of Einstein’s writings. In 1965 GR left adolescence

behind, emancipated from its creator, and became a mature physical theory full of

vitality and surprises.

2. Before 1955

Prior to 1965 there were many indications that the appearance of some kind of

catastrophic irregularities, say “singularities”, was common in GR. We give a succinct

summary of some selected and instructive cases, with side historical remarks.

2.1. Friedman closed models and the de Sitter solution

As an early example, in 1922 Friedman [120] looked for solutions of (1) with the form

ds2 = −Fdt2 + a2(t)
(
dχ2 + sin2 χdΩ2

)
(2)

where a(t) is a function of time t, F is an arbitrary function, and dΩ2 represents

the standard metric for a round sphere of unit radius. This Ansatz followed previous

discussions by Einstein and de Sitter [97, 87] where the space (for each t =const.) was

§ As a side historical remark, Einstein himself wrote a paper on “singularities” [99], later generalized

to higher dimensions with Pauli [100]. However, these results are concerned with quite another type of

singularities, namely, with the non-existence of regular point-particle solutions to stationary vacuum

gravitational equations —for a revision see [135].
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taken to be a round 3-sphere (so that χ ∈ (0, π)) and the energy-momentum described

pressure-less matter (‘dust’) with Ttt as the unique non-identically vanishing component.

Friedman proved that the only possible solutions to (1) with constant a(t) were given

by either F =const., which gives the Einstein static universe of [97], or by F = c2 cos2 χ

which leads to the de Sitter universe [87, 88] (in this case with Ttt = 0 and Λ > 0).

Nevertheless, he also found that there are dynamical solutions that require F = c2 and

a scale factor a(t) satisfying the following set of ODEs

8πG

c2
Ttt + Λ =

3

a2
(ȧ2 + 1), Λ = 2

ä

a
+

1

a2
(ȧ2 + 1)

where dots indicate derivative with respect to ct. The second equation has an immediate

first integral

a(ȧ2 + 1) = A+
Λ

3
a3

for a constant A, and then the first equation provides the explicit form of the mass

density

Ttt =
3c2

8πG

A

a3
.

A simple analysis of the solutions for a(t) leads to the conclusion that, whenever

Λ < 4πGTtt/c
2, a → 0 inevitably for a finite value of t. This is a terrible failure of

space-time itself, as the spatial part in (2) truly vanishes and the mass density diverges.

Friedman talked about the “creation time”, and then went on to consider the case with

negatively curved space slices t =const. in [121].

Incidentally, and for the sake of illustration in later discussions, one may observe

that the creation time is absent when A = 0, in which case the energy density vanishes.

This provides another solution of (1) with a = λ cosh(ct/λ) and Λ = 3λ2. It is easily

checked that this new solution describes a space-time of positive constant curvature, ergo

maximally symmetric [102, 320, 233]. Surprisingly, the original de Sitter solution with

F = c2 cos2 χ has also positive constant curvature, and therefore the two of them must

be isometric. However, there arises a problem in the line-element (2) with F = c2 cos2 χ

at χ = π/2 —in this case it is time that seems to vanish— so that in principle only one

of the two intervals (0, π/2) or (π/2, π) should be allowed for χ. This amounts to taking

only one hemi-3-sphere, and it becomes apparent that the manifold has been mutilated

artificially.

This problem was addressed in [208, 209] and independently in [321], where one can

find pioneer analyses of the observational redshift in cosmological models. With modern

notation, the question is resolved by noticing that the first solution with a constant

a(t) = λ can be obtained from the second one (written with barred coordinates) by

means of the following transformation

t =
λ

c
ln

sinh(ct̄/λ) + cosh(ct̄/λ) cos χ̄√
1− cosh2(ct̄/λ) sin2 χ̄

 , sinχ = cosh(ct̄/λ) sin χ̄ .
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Note that, in this transformation, the barred coordinates are restricted by

cosh2(ct̄/λ) sin2 χ̄ < 1, a restriction which is not necessary in the solution by itself. Thus,

the second solution provides effectively an extension of the original de Sitter solution. It

is important to realize that, while the original de Sitter solution is independent of time

t (and therefore it is static), the extended solution depends explicitly on time t̄ and it is

not globally static. One way to see the effect of this property, which is enlightening for

later considerations, is to check that the area of the round spheres defined by constant

values of t̄ and χ̄ is given by 4πλ2 cosh2(ct̄/λ) sin2 χ̄. One may be tempted to use this

expression as a new coordinate by calling it ‘4πr2’ say, but: will r be a space, or rather

a time, coordinate? To answer this question one computes the gradient of the function

r and checks its causal character. It is easily seen that this gradient is spacelike in

the region cosh2(ct̄/λ) sin2 χ̄ < 1 (the original de Sitter one), while it is timelike when

cosh2(ct̄/λ) sin2 χ̄ > 1. Therefore, in this last region, the area of the round spheres is

strictly increasing (or decreasing) towards the future, as r is a time coordinate.

We had to wait until Penrose found a deeper significance and a discerning

interpretation of this kind of behavior in his milestone paper [248].

2.2. Lemâıtre: big bang models and an extension of Schwarzschild’s solution

In 1927 Lemâıtre [212] constructed a model that combined Einstein static and de Sitter

universes in the sense that it approached the former at large past times and the latter

in future distant times. In this way he provided an explanation for the observed

galactic (or nebulosae) redshift based on GR. Then, in an outstanding and insightful

paper [213], he constructed a general solution of the field equations (1) for dust and

spherical symmetry (today known as the Lemâıtre-Tolman model [199]) and found many

interesting results —including the instability of Einstein static universe—, in particular,

an ubiquitous initial singularity of Friedman creation-time type for expanding models

capable of explaining the observed cosmological redshifts. Thus, the singularity was

there again. Of course, this singular behaviour could be due to an excess of symmetry

(spherical) which, as exact, would not be realistic. Very remarkably he gave up spherical

symmetry and studied the spatially homogeneous but anisotropic models that today we

call Bianchi I models [267, 293]. The conclusion was unambiguous: the singularity is

still there, “anisotropy can no more prevent the vanishing of space” [213].

In the very same excellent paper [213], Lemâıtre proved, and unequivocally

understood, the non-singular nature of the Schwarzschild event horizon along the same

lines of what had happened with de Sitter space-time and its extensions. He managed

to write the general solution of the spherically symmetric vacuum field equations (1) as

ds2 = −c2dt̃2 +

(
α

r
+

Λ

3
r2

)
c2dχ2 + r2dΩ2

where r3 = α
λ

sinh2[3λc(t̃−χ)/2], with α a constant and λ as above. As one can see, this

solution is singular only at r = 0 (for positive α and non-negative Λ), thus removing the
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then called “Schwarzschild singularity”. He then found an explicit change of coordinates

bringing the previous line-element into the standard Kottler form [198]

ds2 = −
(

1− α

r
− Λ

3
r2

)
c2dt̂2 +

(
1− α

r
− Λ

3
r2

)−1

dr2 + r2dΩ2. (3)

Recall that Schwarzschild had found the general solution of Einstein vacuum equations

without Λ in [275], which can be written in standard coordinates as (3) with Λ = 0

[275, 93]. There appeared a distinguished worrying hypersurface r = α, which is actually

similar to the region χ = π/2 in de Sitter space-time analyzed above. Therefore, the

metric found by Lemâıtre is an explicit regular extension of the Schwarzschild solution

that includes regions beyond r = α. In [213] he distinctly remarked that the “problem”

was due to the assumption of the entire spherically symmetric world being static:

We show that the [r = α] singularity of the Schwarzschild exterior is an

apparent singularity due to the fact that one has imposed a static solution and

that it can be eliminated by a change of coordinates.

And later

The [r = α] singularity of the Schwarzschild field is thus a fictitious

singularity, analogous to that which appears at the horizon of the centre in

the original form of the de Sitter universe.

The question of why, after the resolution of the de Sitter and Schwarzschild horizons, the

confusion about the latter went on for almost another 40 years —see e.g. the excellent

reviews in [305, 188]— is a mysterious story. Actually, Eddington had found another

extension (what we would call today its Kerr-Schild form) in 1924 [94]. This is the basis

of what was later called the Eddington-Finkelstein extension [111] —explicitly used for

the illustrated discussion in our milestone paper [248]— and then the maximal Kruskal

extension [205]. As clearly discussed in [239] where the so-called R-and T -regions were

introduced, all extensions require giving up staticity if regions with r < α are to be

included, where 4πr2 is the area of the preferred round spheres. These extensions show

that there is something unusual going on with the round spheres in the r < α-regions

because their area function 4πr2 can be seen as a timelike coordinate there, as mentioned

above in the de Sitter case.

It is interesting to notice that Lemâıtre wanted to solve an apparent contradiction

between the spherically symmetric Friedman’s solutions, where the area of the round

spheres can become as small as desired, and the existence of a minimum value for such

an area if one is to accept the r > α restriction of the static Schwarzschild solution

because then “a mass such as that of the Universe [could] not have a radius less than

one billion light years” ([213], p.643 of the english translation). There is a discussion

in [103] putting forward the view that this line of reasoning was seminal to the later

Oppenheimer-Snyder models, next subsection 2.3.
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2.3. The Oppenheimer-Snyder model

The previous discussion indicates that singularities in the past of our world appeared in

the simplest models of the classical GR theory if the Universe is expanding everywhere.

One could consider a sort of time-reversal of this situation: what happens in contracting

worlds? This turned out to be of enormous relevance for the study of compact stars, since

in 1931 Chandrasekhar unexpectedly found an upper mass limit for white dwarf stars

in equilibrium, even when taking into account the quantum effects [53]. This implied

that stars with a larger mass will inevitably collapse. Then, the question of massive

neutron cores (or stars) was addressed in [242] by using a cold Fermi gas equation of

state and GR. They found another mass limit for equilibrium and concluded that, even

allowing for deviations from the Fermi equation of state, a massive enough neutron star

will contract indefinitely never reaching equilibrium again.

This prompted Oppenheimer and Snyder to consider the solutions of the field

equations (1) that described such physical processes [241]. They proved using general

arguments that, in spherical symmetry, values of r = α would eventually be reached,

that light emitted from the star would be more and more redshifted for external observers

—who would only see the star approach r → α asymptotically—, and that the entire

process will last a finite amount of time for observers comoving with the stellar matter.

They then constructed an explicit analytical model which, in modern language, consists

of a portion of the Friedman closed model (2) for dust (with Λ = 0 and ȧ < 0) matched

with the Schwarzschild solution at the timelike hypersurface defined by χ = χ0 < π/2

on the interior side —and correspondingly by a hypersurface ruled by timelike geodesics

and r = a(t) sinχ0 on the vacuum side— proving that the junction requires

α = A sin3 χ0.

Hence, (i) the “Schwarzschild surface” r = α was indeed crossable by innocuous models

containing realistic matter such as dust; and (ii) a careful analysis of the model shows

that the star will end up in a catastrophic singularity where a(t) → 0 and therefore

space “vanishes” again.

What did Einstein think about the singularities and all the previous results? Well,

it is hard to tell, obviously, but it seems that he —and the orthodoxy— simply dismissed

the known singularities as either a mathematical artifact due to the spherical symmetry,

or as unattainable effects beyond the feasibility of the physical world. In the same 1939

Einstein, seemingly unaware of [241]‖, “proved” that the Schwarzschild singularity is not

physically realizable [98] by considering a statistical distribution of particles moving in

circular orbits due to its own (spherically symmetric) gravitational field. He concluded

that r → α cannot be reached for the reason that matter cannot be concentrated

arbitrarily as otherwise the constituting particles would reach the speed of light —and

he conjectured that this behaviour will be exhibited in all cases. Then, in [101] he treated

‖ [241] was published in september, before [98] (october). However, Einstein’s paper was submitted

before (may vs. july).
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the problem of the influence of the universal expansion in local gravity fields and came

up with a solution widely known as the Einstein-Straus vacuole, which is the basis of the

Swiss-cheese models, by matching an interior Schwarzschild static cavity to an external

Friedman-Lemâıtre expanding universe —for a recent review, see [227]. Ironically, this is

precisely the same matching as that in [241] —for closed universes and in time reversal.

Whenever two portions of given spacetimes are matched across corresponding proper

hypersurfaces, the two discarded pieces in the given spacetimes also automatically match

with exactly the same conditions: these are called “complementary matchings”, see

e.g. [108]. Accordingly, the Einstein-Straus model, when contemplated in its full past

evolution, leads to a singularity and to regions with r < α in the vacuum part of the

space-time.

In summary, even though infinite values of physical observables must not be

accepted in physical reality, one must be prepared to probe the limits of any particular

theory, but this was reluctantly done in GR before 1955 despite many important

indications that this was needed. A new generation of less prejudiced physicists and

mathematicians was about to enter into play to take the question of the singularities

seriously within the GR theory. As a final remark of historical importance and scientific

relevance, let us mention that Gödel wrote his famous paper [157] with the solution

named after him in a volume dedicated to Einstein’s 70th birthday. It is a “totally

vicious” solution of the field equations (1), meaning that there are closed timelike curves

passing through every point of the manifold [52, 282]. Nevertheless, Gödel’s space-time

is geodesically complete, free of singularities, and rotating. He studied in further depth

the case of rotating universes in a second paper [158]. These papers are considered

[305] the genesis of many of the necessary techniques used in the path to the singularity

theorems, specially concerning causality theory and actions of Lie groups on the space-

time, see [104]. It may have also influenced Raychaudhuri in the formulation of his

fundamentally important equation, see next section.

3. From 1955 to 1965

Einstein died on 18th April 1955 and, coincidentally, less than one month later a new

era started for GR with the publication of Raychadhuri’s paper containing the first ever

singularity theorem [259]. In this remarkable paper, he included a primitive form of

the equation named after him, which is the basis of later developments and of all the

singularity theorems, see subsection 5.1.

The Raychaudhuri equation can be readily derived from the Ricci identity for a

vector field uµ

(∇µ∇ν −∇ν∇µ)uα = Rα
ρµνu

ρ

by contracting α with µ and then with uν , leading to

uν∇µ∇νu
µ − uν∇ν∇µu

µ = Rρνu
ρuν
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and then reorganizing by parts the first summand on the left-hand side:

uν∇ν∇µu
µ +∇µuν∇νuµ −∇µ(uν∇νu

µ) +Rρνu
ρuν = 0. (4)

Nothing deep or mysterious here: Raychaudhuri’s contribution was to understand the

deep physical implications of this simple geometrical relation. To start with, note that

if uµ defines a (affinely parametrized) geodesic vector field, then uν∇νu
µ = 0 and the

third term in (4) vanishes. The second term can be rewritten by splitting

∇µuν = ∇(µuν) +∇[µuν] ≡ Sµν + Aµν

into its symmetric Sµν and antisymmetric Aµν parts, so that

∇µuν∇νuµ = SµνS
µν − AµνAµν .

A one-form uµ is proportional to an exact differential uµ ∝ ∂µf —defining thereby

orthogonal hypersurfaces f =const.— if and only if Aµν = 0. Moreover, assuming that

uµ is either null or timelike normalized, so that uµuµ = 0 or −1, both SµνS
µν and

AµνA
µν are non-negative. Consequently, for hypersurface-orthogonal geodesic time-like

or null vector fields uµ, one has

uν∇ν∇µu
µ = −SµνSµν −Rρνu

ρuν ,

ergo the sign of the derivative of the divergence or expansion

θ ≡ ∇µu
µ = Sµµ (5)

along the geodesic congruence is determined by that of Rρνu
ρuν . If the latter is non-

negative, the former is non-positive. In particular, if θ is negative (positive) at some

point and Rρνu
ρuν ≥ 0 it follows that θ will reach an infinite negative value in finite

affine parameter to the future (past) —unless all the quantities are zero everywhere.

If (a timelike) uµ describes the motion of a fluid moving along these geodesics, then a

physical singularity develops, since the mean volume decreases and the density of the

fluid will become unbounded, see subsection 3.1. This was the situation treated in [259]

for the case of irrotational dust.

In general, though, no singularity but rather a caustic along the flow lines of the

congruence defined by uµ is formed. This property is usually called the focusing effect

on causal geodesics. For this to take place one needs the condition

Rρνu
ρuν ≥ 0 (6)

which is a geometric condition independent of the particular theory. (6) is called the

timelike (respectively null) convergence condition when valid for timelike (resp. null)

vector fields. In GR, of course, one can relate the Ricci tensor to Tµν via (1) and

thereby condition (6) can be rewritten in terms of physical quantities. This is why in

the standard literature (6) is many times called the strong energy condition in the case

with Λ = 0 [173], see subsection 5.1.1 for a discussion.
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3.1. The Raychaudhuri and Komar singularity theorems

The main result found in [259] can be stated as a singularity theorem for irrotational

dust. This was almost immediately generalized, independently, by Komar to the general

situation of fluids [197, 260]. Komar’s paper contained basically the same ideas but the

concept of an energy condition on Tµν —such as (6) when (1) is taken into account— was

introduced. Assuming that matter moves along a geodesic and hypersurface orthogonal

timelike vector field uµ a matter singularity can be obtained under some physically

interesting circumstances. In modern terms the theorem can be stated as (Theorem 5.1

in [282]):

Theorem 1 (Raychaudhuri and Komar). Assume Λ = 0 and a perfect-fluid energy-

momentum tensor

Tµν = %uµuν + p(gµν + uµuν), uµuµ = −1 (7)

whose velocity vector field uµ is geodesic and irrotational. If the expansion (5) is positive

(resp. negative) at an instant of time and (6) holds, then the energy density % of the

fluid diverges in the finite past (future) along every integral curve of uµ.

The notion of ‘an instant of time’ is meaningful here: as uµ is geodesic and

hypersurface-orthogonal we have uµ = −∂µτ , where τ is a natural time coordinate

for the fluid, and the assumption reads simply θ|τ0 > 0 (or < 0). The key assumption

in Theorem 1 is the absence of acceleration and rotation, from where we learn that

acceleration (or rotation) of matter becomes necessary to avoid singularities. This is

physically reasonable for (i) acceleration is directly related to the existence of gradients

of pressure, which are forces opposing gravitational attraction in general fluids; and (ii)

Gödel’s revolutionary papers [157, 158] proved that rotation could prevent the formation

of singularities. This is also supported by Newtonian cosmologies, in which rotation

prevents the appearance of matter singularities, see, e.g., [267] and references therein.

Theorem 1 has one virtue that, as we will see in subsection 5.1, will be lost in the

more advanced singularity theorems: it predicts that the singularity means a divergence

of the energy density, and it says where to locate it.

Approaching 1965, there were more singularity theorems based on equation (4),

mainly dealing with spatially homogeneous (Bianchi) cosmologies [289, 171, 216, 217].

In particular, [216, 217] were the basis for the later much studied BKL conjecture [20, 21],

see subsection 6.3.

To finish this section, we would like to remark that in 1963 Kerr also discovered the

first solution for a spinning mass [195] later to become the unique metric of uncharged

black holes [263, 180].

4. The 1965 theorem, its implications and relevance

The focusing effect predicted by the Raychaudhuri equation (4) on causal geodesics

emitted orthogonally from co-dimension 1 (in the case of hypersurface-orthogonal
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timelike unit vector fields uµ) or from co-dimension 2 (null vector field case)

submanifolds became a fundamental ingredient to derive the powerful singularity

theorems. Nevertheless, as remarked above, this focusing by itself does not lead to

singularities in general. As a trivial example, observe that flat spacetime satisfies

condition (6) trivially, but it has no singularities: the focusing effect simply leads to

focal points or caustics of the geodesic congruences.

One therefore needs to combine the focusing of geodesics with other reasonable

ingredients. In this respect, the key turning point was the 1965 singularity theorem

[248]. As stated in the introduction of [248], Penrose wanted to prove that deviations

from spherical symmetry were not able to prevent the formation of singularities, such

as those described in the Oppenheimer-Snyder collapse, within the GR theory. Recall

that there was a previous result by Lemâıtre in this direction, but it still needed a

lot of symmetry (spatial homogeneity); work in [92] also led to the conclusion that

irregularities in non-spherical collapse were somehow suppressed by physical processes

leading to a picture very similar to that of [241]. To achieve his goal, Penrose brought

in the idea of incompleteness to describe singular spacetimes (subsection 4.1), and he

introduced the notion of closed trapped surface for the first time, a major conceptual

contribution to the physics of the gravitational field (subsection 4.2). Before discussing

these two fundamental ideas let us present a modern version of Penrose’s theorem.

Theorem 2 (Penrose singularity theorem). If the space-time contains a non-compact

Cauchy hypersurface Σ and a closed future-trapped surface, and if the convergence

condition (6) holds for null uµ, then there are future incomplete null geodesics.

For a proof of the theorem one can consult many references apart from [248], e.g.

[173, 251, 282, 202, 16, 240, 316].

A Cauchy hypersurface [173, 148, 251, 316] is an “instant of time” that provides

good initial value conditions for the entire space-time. More precisely, it is an achronal

hypersurface which is met once and only once by all causal endless curves (actually

this follows if it is traversed by all endless null geodesics, [148]). This is the pertinent

property for the proof of theorem 2, but there are other implications of the existence of a

Cauchy hypersurface which will be essential for later singularity theorems, namely, that

this is equivalent to the space-time being globally hyperbolic [214], and the existence

of maximal geodesics between any two causally related points, see subsection 5.1.2 for

details. If there is a Cauchy hypersurface Σ, then the space-time as a manifold is a

product R×Σ, all slices {t}×Σ being diffeomorphic Cauchy hypersurfaces [148, 279, 32].

The presence of a Cauchy hypersurface is not guaranteed as was shown by Penrose in

another influential paper [247] —published almost simultaneously with [248]— where

he discovered that plane waves in GR do not admit Cauchy hypersurfaces. Whether

or not physically realistic spacetimes are globally hyperbolic is related to the so-called

strong cosmic censorship conjecture, see subsection 6.1.

The strategy of the sketched proof presented in [248] was to assume that null

geodesics were complete, proving that then the boundary of the future of the closed
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trapped surface is compact. To do that one uses the focusing of null geodesics emanating

orthogonally from the surface as follows from (4)¶. But this boundary is actually an

imbedded submanifold (without boundary!) [173, 251], while its canonical projection

to Σ would have to have a boundary as Σ is non-compact. Therefore, as argued in

[248], one must choose among one of the following possibilities: (6) is violated for null

vectors, or the concept of space-time loses its meaning at extreme conditions (maybe

quantum effects), or some null geodesics are not complete. Actually, these may all be

inter-related.

Next, we discuss the idea of incompleteness, which under the influence of [248]

eventually became the standard definition of a singularity in GR.

4.1. What is a singularity?

The problem of how to define a singularity in General Relativity was very difficult indeed,

see [147, 267]. Intuitively, one expects that divergences of any physical or geometrical

quantity would be a characteristic feature of singularities. However, there are problems

of several kinds:

(i) singularities do not belong to the space-time which is by definition constituted of

regular points.

(ii) characterizing the singularities with misbehaviors of the curvature tensors may run

into problems, as they may depend on a bad choice of basis [106],

(iii) even if one uses only curvature invariants —independent of the bases— it can

happen that all of them vanish and still there are singularities.

(iv) sometimes, singularities arise due to bad properties of the tangent bundle, for

instance in conical singularities the main problem is a lack of independent tangent

directions [106, 312]

(v) there are other known, more pathological, examples of spacetimes with vanishing

curvature and incomplete geodesics [232, 231]

(vi) sometimes there appear directional singularities, defined as limit points towards

which the curvature tensor blows up along some, but not along other, directions

[292, 143, 182, 276]

These complications led to an elaborated classification of possible singularities arising

from the curvature tensors [106].

On the other hand, incomplete physical curves may help here. Curves are very

good pointers, and using curves one employes objects that belong to the space-time

exclusively. One can imagine the fate of a courageous traveler (his/her worldline is a

casual curve in the space-time) approaching a singularity: he/she will disappear from

our world in a finite time. The time-reversal situation will describe the “creation” of

¶ Penrose used an equation from [234] and did not refer to Raychaudhuri’s equation. However, in

his previous paper [247] he acknowledges that this effect is “essentially the same phenomenon as that

discovered” in [259, 197], applied to null rather than timelike geodesics.
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the Universe: things suddenly appeared from nowhere a finite time ago. It seems thus

sensible to diagnose the existence of singularities whenever there are (hypothetical)

travelers which disappear, or materialize, abruptly.

A singularity in a Lorentzian manifold is an incomplete endless curve.

These curves cannot be continued regularly within the space-time despite they reach

only finite values of their canonical parameter. All singularity theorems after [248]

prove merely the existence of geodesic incompleteness, which of course is a sufficient

condition for singular spacetimes according to the definition. Nevertheless, there are

known examples [147, 15] of geodesically complete space-times with incomplete time-

like curves of everywhere bounded acceleration, ergo singular too. As far as we know,

there is no known singularity theorem proving the existence of a geodesically complete

singular space-time of this type.

What is the relation between geodesic incompleteness and curvature misbehavior,

if any? On can actually prove limits on the curvature growth for maximal geodesics

[301, 194, 235, 295]. The main result is that, along a causal incomplete geodesic with

tangent vector vµ, Rαβµνv
βvµ computed in a parallel propagated basis cannot grow

faster, in modulus, than (τ − τ̂)−2 when approaching the singularity at τ = τ̂ , where

τ is an affine parameter (proper time for timelike geodesics) along the geodesic. It is

certainly curious that one can put a limit on the curvature growth when approaching

the end of an incomplete geodesic predicted by the theorems, but one does not know

whether the curvature will diverge at all! However, some results pointing towards a

curvature divergence can be found in [67, 68, 69, 71, 72, 299, 305].

4.2. The key concept of closed trapped surface

In Newtonian gravitation there is the important concept of escape velocity, providing the

necessary initial condition for a small object to abandon a gravitational field eventually

reaching infinity. Thus, a good indication of a very strong gravitational field would be

a very large escape velocity —say close to that of light. In GR things are much more

complicated, as one would expect. Strong gravitational fields can distort the paths

of light immensely. Penrose cleverly invented an appropriate notion, closed trapped

surfaces, capturing this intuitive but maybe vague idea of “possibility of getting away

from a gravity field”.

As introduced in [248], a closed trapped surface is a two-dimensional imbedded

submanifold S (surface), compact without boundary (closed), such that the two

families of light rays emerging orthogonally from S towards the future converge initially

(trapped). An intuitive picture of this idea is presented in figure 1. Locally, the two

family of light rays can be mathematically represented by a pair of future-directed affine-

parametrized geodesic null vector fields kµ±, and the infinitesimal variation of the area

of S is measured by the respective expansions (5): θ± = ∇µk
µ
±. These are defined up
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Figure 1. Intuitive explanation of the concept of a closed future trapped surface, one

dimension suppresed. Time is running upwards as shown. In the stationary situation

(left), the original sphere represented in the t = t0 slice as a yellow circle sends light

signals in the radial out- and in-going directions. These flashes form two new spheres

after an infinitesimal time dt, as represented by the red (ingoing) and blue (outgoing)

circles. The area of the former (latter) is smaller (larger) than the area of the orginal

surface, which remains constant with time t. However, if the universe is contracting,

as shown on the right, both the blue and red surfaces can have areas smaller than

that of the original surface at the initial time. In this case, the surface is said to be

future trapped. The limit case where the blue surface has precisely the area of the

original surface at the initial time is termed marginally future trapped. (Reproduced

from [287])

to multiplicative factors, but only their signs are relevant here. Thus, a closed future-

trapped surface has

θ+ < 0, θ− < 0. (8)

There is a dual definition of past-trapped surface replacing future by past or,

equivalently, keeping the future-pointing kµ± but reversing the signs in (8).

The notion of trapped surface is independent of the coordinates and of the existence

of symmetries such as spherical or the axial symmetry present in Kerr’s solution

[195, 293, 173]. Importantly, it is defined by using inequalities (8), so that trapped

surfaces remain stable under small perturbations; this can be made mathematically

precise within the space of Lorentzian metrics [215]. It is therefore a general concept

devised to represent finite regions (the interior of the surface) which are somehow

instantaneously fully confined by a gravitational field.

It is easy to check that (8) is precisely the mathematical condition which generalizes

the timelike character of the gradient of 4πr2 as it appeared in the earlier extensions

of de Sitter and of Schwarzschild spacetimes (for r < α), as discussed above. For, if
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the gradient of r (which measures the instantaneous variation of area) is timelike, its

scalar product with a future-pointing null vector is negative (if dr is future), or positive

(if dr is past). But these scalar products are proportional to the expansions θ±. In

other words, condition (8) is equivalent to dr being timelike future (and past for the

reversed signs). Observe that actually this means that that the scalar product of dr with

any future-pointing vector has the corresponding sign. Hence, a future (past) trapped

surface has an area that is initially decreasing along any possible future (past) direction.

Two important remarks:

• the one-form dr (“gradient of area”), and its causal character, emerges as the

key object to define the trapping of surfaces in known situations with spherical

symmetry. We will see that this can be readily generalized, and the correct

mathematical vector to be used is simply the mean curvature vector of S

[202, 228, 240].

• From the discussion on de Sitter and Schwarzschild extensions in section 2, and from

the above definition and intuitive picture of closed trapped surfaces, one realizes

that stationary regions cannot accommodate them. This is actually a general result,

see [228].

The idea of closed trapped surface and its applications will be analyzed in deeper detail,

with a more up-to-date perspective, in subsection 7.2.

5. After 1965: immediate impact of the theorem

Penrose’s singularity theorem shook the GR community. Its impact was ample, profound

and straightaway, see [105, 305].

A few months after [248] was published, Hawking [164] realized that closed trapped

surfaces, in its past version, will be present in any expanding Universe close to be

spatially homogeneous and isotropic. This started a series of papers by him, Ellis,

Geroch and others on the question of the inevitability of an initial singularity in our

past if GR is assumed to hold and some reasonable conditions are met. Papers were

even published in the same issue and consecutively, such as [165, 144].

In [166, 167, 168] Hawking developed new ideas which —despite some initial

inaccuracies [305]—, when combined with those put forward in [248], formed the

nucleus of the modern singularity theorems. In particular he borrowed from Riemannian

geometry the concept of focal and conjugate points (essentially, these are the caustics

predicted by (4)) and their significance explained by means of the first and second

variation of the length integral [166]: the outcome is that a timelike curve from a point

(respectively from a spacelike hypersurface Σ) maximizes the arc-length if and only if

it is a geodesic (orthogonal to Σ), without corners and without conjugate (resp. focal)

points, see [16, 240, 173, 202, 282, 316]. Similar results, adequately adapted, hold

for null geodesics from a point, or orthogonal to a spacelike surface. A theorem was

proven by assuming a Cauchy hypersurface Σ, letting uµ be the unit geodesic vector field
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orthogonal to Σ on Σ, and assuming that its expansion (5) is bounded from below by

a positive constant. The Raychaudhuri equation leads then to all the geodesics tangent

to uµ having a finite length to the past, ergo the singularity [166, 173, 282]. This mainly

applied for non-compact Σ, the compact case was treated in [167]. In [168] the previous

theorem was improved and another theorem was found by assuming the existence of a

point with re-converging light cones towards the past [168]. This is much better adapted

to what we know about the Universe (no need to assume an everywhere expanding slice),

and the theorem was used in an important article [172] to show that a combination of

the two 1965 breakthroughs —cosmic background radiation and singularity theorems—

gave strong indication that a singularity in our past was inevitable if one is to assume

GR and condition (6) holds everywhere.

Many other physical and mathematical developments were catalyzed by [248] and

the papers cited in the previous paragraph. For instance, in [89] the recurrent idea

of whether or not a quantum theory of gravity can extend solutions of classical GR

beyond the singularities was analyzed for the first time. Furthermore, the theory of

causality, and of causality conditions, was developed and has become an integral part

of GR. The foundations were established in [204] for an abstract analysis of causal

spaces, then the stable causality condition and time functions were introduced in [169],

the relation between the topology of spatial sections and causality studied in [145], the

basic properties of domain of dependence and global hyperbolicity given in [148], and a

comprehensive summary provided in [52], see also [149]. Updated reviews are [139, 230].

Another important ramification from the ideas behind the singularity theorems was

the standard theory of black holes [170]. It all started with another forceful paper by

Penrose [245] where the fecund idea of conformal infinity was put forward, leading to a

definition of (weak) asymptotic flatness [249] and thereby to the notion of event horizon:

the boundary of the past of future null infinity, see [149, 173, 251, 255, 256] and for a

recent review of conformal infinity [119].

Eventually, a considerable improvement in the understanding of the conditions

under which a space-time must be singular was accomplished by Hawking and

Penrose [174] in what is still considered the preeminent singularity theorem. Later,

excellent condensations of the techniques and results behind the theorems, with lengthy

enlightening discussions, were given in [173, 251]. The Hawking-Penrose result is based

on the fundamental observation that the following three things are incompatible:

• every endless causal geodesic has conjugate points

• there are no closed timelike curves

• there is a set whose future (or past) has a compact boundary

These last sets are called “trapped sets” in the literature [173, 174, 282], but they are

not to be confused with trapped surfaces. The concept of trapped surface is local, there

is no need to know the structure of its future or past. However, one can prove, following

the ideas in [248], that a closed trapped surface will become a trapped set whenever the

space-time possesses complete null geodesics [16, 282]. The same can be said of points
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with reconverging light cones, and of compact imbedded hypersurfaces. To enforce the

first of the three conditions usually (6) is enough, but to avoid exceptional situations

one also needs to add the so-called generic condition:

u[ρRα]βλ[µuσ]u
βuλ 6= 0. (9)

For timelike uµ this can be written in the simpler form Rαβλµu
βuλ 6= 0. Physically

this means that the tidal force felt by causal curves will not always and everywhere be

aligned with their tangent vectors. Of course, there are spacetimes where this condition

will not hold, but they are very special indeed, see subsection 5.1.1.

As a corollary one has the theorem

Theorem 3 (Hawking and Penrose). If the convergence (6) and generic (9) conditions

hold for causal vectors, there are no closed timelike curves and there exists at least one

of the following:

• a closed achronal imbedded hypersurface

• a closed trapped surface,

• a point with re-converging light cone

then the space-time has incomplete causal geodesics.

Even though originally proven in 4-dimensional spacetimes, Theorem 3 actually

holds in arbitrary dimension —in which case the closed trapped surface is a co-dimension

two trapped submaniolfd.

In the next subsection we present an assessment of this and other classical

singularity theorems, the ideas behind their proofs, and a discussion of their

assumptions.

5.1. Classical singularity theorems

Since the publication of [248, 174] there have been many papers proving singularity

theorems, mainly trying to relax the assumptions, to refine their conclusions and/or

to enhance their possible physical implications. Letting aside some subtleties, they are

usually interpreted as providing evidence of the (classical) singular beginning of the

Universe and of the singular final fate of massive compact stars. A more up-to-date

perspective would rather state that they provide very solid evidence of the need of

(possibly quantum) corrections to GR when extreme gravity effects occur.

Some selected improved theorems are:

• adding alternatives to the trapped sets in theorem 3 and some topological

considerations for the case of non-simply connected space-times [136, 137, 210]

• relaxing (6) to some milder averaged condition along geodesics, e.g. [303, 54, 40,

194]

• related to the previous, theorems which allow for the violation of (6) to

accommodate inflationary models [41, 43, 44, 45] (more on this in section 8)
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• quantifying somehow the curvature growth along incomplete geodesics and proving

the existence of a maximal incomplete geodesic, that is, one maximizing proper

time between any two of its points [295, 194]

• weakening the causality assumption that forbids closed timelike curves [300, 302].

This work was later improved in [200] assuming that the boundary of the set of

points where there are closed causal curves is compact, see also [201]. A further

improvement was found in [221], which contains all previous results

• using conformal embeddings of the space-time into larger ones fulfilling the

necessary assumptions [207] and other kind of envelopments [9]

• Theorems specially tailored for some specific situations, such as singularities in

colliding plane waves [304], see [162] for a complete review.

• Theorems independent of (1), just assuming a metric connection and appropriate

conditions such as (6), e.g. [218, 291]. This is related to the study of singularity

theorems in alternative theories, mainly based on rewriting the field equations in

Einstein form (1) with an “effective” energy-momentum tensor, see [127].

There will be more modern singularity theorems discussed in section 8.

Such a diversity of theorems do not have to cause too much concern to the reader.

To understand their main implications and applications one can use an appropriate

pattern theorem because, as argued in [282, 288], they all share the same structural

framework as condensed in the following

Theorem 4 (Pattern Singularity Theorem). If a space-time of sufficient differentiability

satisfies

(i) a condition on the curvature

(ii) a causality condition

(iii) and an appropriate initial and/or boundary condition

then it contains endless but incomplete causal geodesics.

The assumption of sufficient differentiability is often ignored despite its

mathematical and physical relevance. The singularity theorems hold if the metric gµν is

twice differentiable with continuity. A breakdown of such differentiability is not a true

singularity, specially if the first derivatives of gµν satisfy the Lipshitz condition. Recall

that the entire metric of finite objects (stars or galaxies) is usually split into two different

regions matched together at the surface of the body such that the gµν cannot be twice

differentiable in GR: a jump in the matter density from the interior to the exterior is

directly related to the discontinuity of the second derivatives of gµν via equations (1). As

an example, the Oppenheimer-Snyder collapsing model (or its complementary Einstein-

Straus vacuole) can not have a twice differentiable metric. Hence, this assumption is

restrictive from a physical viewpoint, as actually realized, and briefly discussed, in [173],

see also [69, 71]. A list of the very many places where the differentiability assumption

is used to prove the singularity theorems can be found in [282].
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5.1.1. The condition on the curvature All singularity theorems necessitate a condition

involving the Riemann tensor Rαβµν . These are usually presented under the names of

“energy” and/or “generic” conditions but, as explained in formula (6), this assumption

is of a geometric nature. Mostly, the used conditions are (6) and (9) or appropriate

averaged versions thereof. The generic condition (9) is rarely violated, only in very

special or symmetric situations fails. An interesting example is provided by the Einstein

static universe: it contains trapped sets (compact slices, and points with reconverging

light cones), satisfies (6) and is globally hyperbolic, yet it is geodesically complete.

Condition (6) can be re-expressed using (1), but only in GR. However, (6) depends

then on the sign of Λ and today we know that Λ > 0, just the wrong sign for the

theorems. Alternative or more general theories of gravity retain the theorems, but

their formulation in terms of “energy” conditions depends on the field equations of the

particular theory.

Even in GR and independently of Λ the curvature assumption does not always hold

[173, 282] classically, such as for scalar fields and other realistic type of matter. Actually,

inflationary cosmological models violate it. Notice, however, that as discussed in the

previous list of improved theorems, some of them deal successfully with this problem.

For a wider discussion on energy conditions see [314], in relation with the theorems

[282], and for a more recent perspective [76].

The curvature condition enforces the geodesic focusing via the Raychaudhuri

equation (4), and thereby is absolutely indispensable.

5.1.2. The causality condition The causality condition is used in two respects:

• to prevent the possibility of traveling to one’s own past

• to ensure the existence of geodesics of maximal proper time between events

The first of these is not superfluous since Gödel’s space-time contains closed time-like

lines, but also reconverging light cones [41] (and minimal surfaces [237, 41, 202, 228]),

still all its geodesics are complete. As mentioned above, this part of the assumption

can be substantially relaxed: it is enough that a region without closed timelike curves

is causally separated from the set of points in such curves, see [221].

The second point is more important, and is related to the existence of Cauchy

hypersurfaces. These do not have to exist in general spacetimes. Nevertheless, in a

majority of situations there will be partial Cauchy hypersurfaces: slices adapted to give

initial conditions which fully determine the space-time in their domain of dependence

[148, 251, 173], These domains may not be the entire space-time but they are, by

themselves, globally hyperbolic spacetimes. The proofs of the theorem always use

such globally hyperbolic portions due to the following fundamental property: global

hyperbolicity demands that the space of all causal curves between any two events is

compact [214]. This is equivalent to the property that the intersection of the past of

any point with the future of any other point is compact too. And then one can prove the

existence of geodesics maximizing proper time between any two points of the globally
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hyperbolic portions of the space-time. The interesting fact here is that these maximal

geodesics cannot have focal/conjugate points (and their pencils cannot have caustics),

[251, 173, 16, 240]. And this is the essential property used in the theorems, as explained

in what follows.

5.1.3. The boundary/initial condition Recapitulating, from the curvature condition

one has focusing of all causal geodesics, ergo the existence of caustics and focal points

due to the focusing effect implied by the Raychaudhuri equation. Simultaneously, the

causality condition warrants the existence of geodesics of maximal proper time, hence

necessarily without focal points, joining pairs of events of the space-time.

A contradiction seems to twinkle — if causal geodesics are complete. Despite

appearances, however, there is no such contradiction yet. The missing clue is that we

have not enforced a finite upper bound for the proper time of selected families of causal

geodesics. To get a contradiction with geodesic completeness one needs to add the

initial/boundary condition (positive expansion of slices, closed trapped surfaces, etc.).

This is why it took some time to understand how to combine the focusing effect with the

existence of geodesics maximizing the arc-length to get geodesic incompleteness. The

imaginative notion of closed trapped surface introduced in [248] —later generalized to

compact slices and points with reconverging light cones— eventually closed the gap.

Geodesic incompleteness cannot be proven without the initial/boundary condition.

There exist globally hyperbolic spacetimes, satisfying the strict inequality (6) for

all causal vectors, with everywhere expanding Cauchy hypersurfaces, but free of

singularities [280, 220]. In these examples all geodesics are complete. They can avoid the

conclusions of the singularity theorems because the initial/boundary condition simply

fails [55], and therefore there is no finite bound for the maximal proper times. The

focussing effect takes place fully, and at the same time there are maximal timelike

geodesics, without focal points, between any two causally related events. For further

details see [282, 285].

Accordingly, the initial/boundary condition is absolutely essential in the theorems.

Whether or not the initial or boundary condition is satisfied by actual physical

systems is debatable. We will probably never know if the entire Universe —not only

the observable one— is spatially finite, or strictly expanding now. Thus, the formation

of closed trapped surfaces in the collapse of physical systems given some realistic initial

conditions has become the main area of research to elucidate this question, see end of

subsection 7.2. One can also follow a similar program, towards the past, in the case of

the expansing Universe. Of course, the formation of closed trapped surfaces may depend

critically on the given initial conditions, so that this is an area of active research and

great relevance in numerical and mathematical relativity now, see section 6.

5.1.4. Ideas behind the proofs The geometrical basis for the proofs have been implicitly

discussed in the previous paragraphs. From a physical point of view, the proofs of

the main theorems 2, 3 and their improvements can be understood, schematically, as
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explicated next. The boundary/initial condition provides us with a set bound to become a

trapped set (remember that a trapped set has a future (or past) with compact boundary).

One of two things will happen: either the set actually becomes a trapped set, or not. In

the last possibility the failure to become a trapped set implies a failure of completeness,

whence the singularity. In the former case, one may consider the whole future of the

compact boundary of the future of the initial set. This is actually a future Cauchy

development, which may describe the entire future or not, in the second case one knows

that the boundary of this domain is non-compact. The only way that this can happen

is by having endless geodesics which never reach this future boundary. Therefore, there

are some geodesics that either reach a singularity or go out to infinity.

In the last possibility the geodesic reaching infinity will have a particle horizon

(boundary of its entire past) which is compact or reaches a singularity. The reasoning

proceeds then as before but to the past. If again we end up with a geodesic that comes

from infinity, its combination with the first one produces the possibility of travelling

indefinitely from the past to the future, remaining within a finite spatial region and

avoiding the focusing effect. But this is not possible if (6) or its averaged versions hold.

One can extract the following conclusion: under appropriate curvature conditions,

GR favours incomplete geodesics versus trapped sets. Sometimes, this is a kind of a

mystery, for the incomplete geodesics arise even in completely empty spacetimes. Notice

that the intuitive idea that singularities must have something to do with the existence

of concentrated matter is then lost. A particular illustrative case of this situation is

given by colliding wave spacetimes [162, 304], which only contain pure gravitational

waves without matter, including realistic cases without plane symmetry and finite wave

profiles [323]. One may try to argue, perhaps, that there is a lot of gravitational energy

localized in extremely small regions in this case.

5.1.5. The conclusion of the theorems The weakest point of the singularity theorems is

their conclusions. In most cases this is very mild, as it can be a mere localized singularity.

The theorems do not say anything, in general, about the situation, strength, extension

and character of the singularity. One cannot even know whether it is in the future

or past. All one knows is that there exists, at least, one incomplete causal geodesic.

Nevertheless, there are some results proving that the incomplete geodesics predicted by

the theorems lead to singularities that, in general, if they are essential and not very

specialized [67, 68, 69], will indicate a divergence of the curvature, see for instance

[67, 68, 69, 71, 72, 299, 305].
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6. Observational consequences: cosmic censorship, critical phenomena,

BKL conjecture, etc.

6.1. Cosmic censorship

What are the observational consequences of the singularity theorems? The answer to

this question depends on another question: can we see singularities? The Schwarzschild

spacetime (3) with Λ = 0 contains a singularity; but it is inside the black hole event

horizon r = α, and is therefore not visible to observers outside the black hole. Even for

observers inside the black hole, the singularity is always towards their future, and the

observer cannot see the singularity before encountering it. This leads to the question

of whether gravitational collapse produces singularities that are like the singularity

of Schwarzschild in these respects [253], that is, are the singularities produced in

gravitational collapse hidden inside black hole event horizons? (weak cosmic censorship)

and are singularities non-timelike? (strong cosmic censorship). The issue of cosmic

censorship is sometimes viewed as one of the consistency of the theory, in other words

that it would somehow be a disaster for general relativity if cosmic censorship were false.

However, this is probably not the right way to look at things for the following reason:

general relativity is itself an approximation obtained by ignoring the quantum nature

of the gravitational field. At sufficiently large spacetime curvature (such as would be

expected to occur near a spacetime singularity) this approximation breaks down. Thus

we will need quantum gravity to understand the true nature of singularities. Cosmic

censorship can thus be viewed as the question of whether the effects of quantum gravity

are visible in the process of gravitational collapse, or more succinctly: do astrophysicists

need to know quantum gravity?

Ideally one would like to formulate cosmic censorship as a precise mathematical

conjecture and then find a proof or a counterexample. However, this turns out to be

quite difficult. Recall that ultimately one is interested in the astrophysical process of

gravitational collapse. Therefore an overly naive formulation of a cosmic censorship

conjecture might be vulnerable to what from the astrophysical point of view looks like

an artificial counterexample. For example one can easily produce “naked singularities”

[250, 252] simply by removing regions from Minkowski spacetime [150] or by collapsing

spherically symmetric dust. Rather than regard cosmic censorship as refuted by these

simple counterexamples, one refines the condition of the conjecture to rule out such

counterexamples. Of course, one could view this conjecture refining process as unfairly

making cosmic censorship invulnerable to refutation by “larding on conditions” (as one

eminent astrophysicist put it). Here the only (admittedly vague) response is that if faced

with an “astrophysically realistic” counterexample one should give up the fight rather

than add a condition to rule it out. For an extensive treatment (including a somewhat

precise version) of the weak cosmic censorship conjecture see [317].

One strategy to use with a conjecture is to search for a proof and also to search

for a counterexample. If a wide class of possible counterexamples can be shown to fail,

then this can be regarded as evidence for the probable truth of the conjecture. For
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weak cosmic censorship, one possible counterexample would be a process that turns a

black hole into a naked singularity. Recall that the Reissner-Nordström metric with (in

natural units) mass M and charge Q represents a black hole if Q ≤ M and a naked

singularity if Q > M . Similarly, the Kerr metric with mass M and angular momentum

J represents a black hole if J ≤M2 and a naked singularity if J > M2. Thus, one way

to produce a naked singularity would be to “overcharge” or “overspin” a black hole. At

first it might seem easy to overcharge a black hole: just shoot enough particles of charge

q into the black hole until finally the black hole’s charge exceeds its mass. However, it

turns out that this process doesn’t work: For q the same sign as Q, the black hole will

repel the charged particle. The particle will therefore need enough energy to overcome

the repulsion, and this energy will be incorporated into the mass of the black hole.

Though the black hole charge increases in this process, so does its mass, and in such

a way that the charge does not exceed the mass. Similarly, spinning black holes repel

the particles whose angular momentum would increase their spin, and this “spin-spin

repulsion” prevents the overspinning of a black hole.

In a similar vein, Penrose showed [252] that if a certain inequality (now called the

Penrose inequality) involving the area of a marginally (outer) future-trapped surface S

—the “apparent horizon”— and the mass of the initial hypersurface containing S were

violated, then the spacetime that comes from evolving the initial data would contain a

naked singularity. To date, the Penrose inequality has been proven only in some special

cases, while no counterexample has been found either, see subsection 7.3 for further

details and a longer discussion.

In a globally hyperbolic spacetime, there can be no timelike singularities. Thus,

one way of formulating strong cosmic censorship is as the statement that (under suitable

conditions) spacetime must be globally hyperbolic. An initial data set has a maximal

Cauchy development, which is a globally hyperbolic spacetime; however that maximal

Cauchy development may not be the whole spacetime. Thus strong cosmic censorship is

the statement that generically the maximal Cauchy development is inextendible. Here,

the word “generically” is used because there are known special cases where the maximal

development is extendible, so without some sort of generic condition, this version of

cosmic censorship would fail. Theorems on maximal Cauchy developments come under

the heading of global results for partial differential equations. They are generally very

difficult to prove (cases with spacetime symmetries are more tractable) and must be done

separately for each type of matter (vacuum, Einstein-Maxwell, etc.). For a discussion

of results of this type see [262].

6.2. Critical gravitational collapse

One idea for producing naked singularities comes from considering some properties of

the Schwarzschild spacetime (3) with Λ = 0. Let M be the Schwarzschild black hole

mass, so that the constant α in (3) reads α = 2GM/c2. Then the spacetime curvature at

radius r is proportional to α/r3 while the radius of the event horizon is α. It then follows
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that the maximum curvature that is visible to outside observers is proportional to 1/α2,

that is, to 1/M2. Thus the ability to produce arbitrarily small black holes is the ability

to produce arbitrarily large curvature visible to outside observers. Therefore in the limit,

a configuration of matter that collapses to form a “zero mass black hole” actually forms

a naked singularity. Is there such a configuration of matter? In his mathematical studies

of the collapse of a spherically symmetric self-gravitating scalar field [60] Christodoulou

proved the existence of just such a configuration of matter. But what are the properties

of such a “zero mass black hole”? and what happens to configurations of the scalar field

that are close to the configuration that produces it? These questions were addressed in

[61, 62] and nicely answered by Choptuik [56] in his numerical simulations of spherically

symmetric scalar field collapse. Choptuik considered a family of initial data specified

by a parameter p which when evolved results in dispersal of the scalar field for small p

and formation of a black hole for large p. There is thus some critical value p∗ which

marks the boundary between those configurations that form black holes and those that

don’t. Choptuik found that for p close to, but greater than p∗ there is a scaling relation

for the mass M of the black hole

M ∝ (p− p∗)γ (10)

Furthermore there is a universality in this relation in the sense that picking a different

one parameter family of initial data leads to the same scaling relation with the same

value of γ. In addition, the critical solution (the one that results from the evolution

of the p = p∗ data) has the property of discrete self-similarity: after a certain amount

of time the scalar field evolves to the same profile, but with the scale of space shrunk

by a factor of e∆. The collapse process then continues, for an infinite number of times,

on an ever smaller scale of space and time, until it finally results in the formation of a

naked singularity in a finite amount of proper time. The critical solution (and the value

of the constant ∆) are also universal in the sense that they do not depend on which

one parameter family of initial data is chosen. Though the critical solution contains a

naked singularity, the production of the naked singularity only occurs for one value of

p in the family and thus would not occur for generic initial data. Thus (as for the case

of strong cosmic censorship) a viable version of weak cosmic censorship takes the form

that naked singularities do not result from the evolution of generic initial data.

There is a connection between the critical solution and the mass scaling relation:

The critical solution has one unstable mode, which grows exponentially as eκτ where κ

is a constant and τ is a logarithmic time variable. It then follows that for p near p∗
any geometric quantity with dimension of length satisfies a scaling relation of the form

of eqn. (10) with γ = 1/κ. In particular, since the parameter α in (3) (the black hole

mass in natural units) has the dimension of length, it satisfies eqn. (10). Note, that this

explanation of scaling requires only that p is near p∗, not that p > p∗. In particular, for

subcritical collapse (i.e. where p < p∗ and therefore a black hole does not form) there

is some maximum value Rmax achieved by the spacetime curvature during the collapse

process. Since the maximum spacetime curvature is a geometric invariant, it follows
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[141] that it satisfies a scaling relation of the form Rmax ∝ (p∗ − p)−2γ where γ is the

same constant that occurs in the black hole mass scaling relation.

Critical collapse has been studied for many forms of matter in spherical symmetry:

perfect fluids [107], complex scalar fields [181], Yang-Mills fields [57] etc. It has also been

studied in axisymmetry for vacuum [1] and with scalar field matter [58]. There is even

a preliminary result for the case with no symmetry [179]. In all cases there is a scaling

relation for black hole mass, and there is a critical solution that is either discretely

self-similar or continuously self-similar. Here the value of γ (and ∆ in the discretely

self-similar case) depends on the type of matter. For results on critical collapse, see the

review [163] and references therein.

6.3. BKL singularities

As remarked in subsection 5.1.5, one disadvantage of the singularity theorems is that

they give very little information on the nature of singularities. One normally thinks of

gravitational collapse as producing an all encompassing singularity at which spacetime

curvature blows up, and at which all observers who enter the black hole end their

existence. However, as explained in section 5, the singularity theorems don’t say all

that, merely stating that for some unspecified reason some observer or light ray ends.

Nonetheless, there may be a simple, general description of the properties of

singularities for the following reason: As with all gravitational phenomena, singularities

are described by the Einstein field equations. If curvature blows up at spacetime

singularities, so should some terms in the field equations. If terms in the field equations

blow up at different rates, then a truncated set of field equations, in which only the

dominant terms are kept, should give an accurate asymptotic picture of the approach

to the singularity. The trick is to guess which terms in the field equations are dominant

and then to somehow verify that that guess is correct. Such a guess was provided by

Belinskii, Khalatnikov, and Lifschitz (BKL)[20, 21] and usually referred to as the BKL

conjecture. BKL write the field equations in a synchronous coordinate system where

time to the singularity is the time coordinate. They then assume that the dominant

terms in the field equations are those involving time derivatives (with the terms involving

spatial derivatives being less important). They then verify that their guess is consistent

with the field equations. Note that in the BKL picture, the singularity occurs at t = 0 in

a synchronous coordinate system, and is therefore spacelike, in accordance with strong

cosmic censorship. Since spatial derivatives are neglected, this means that at each

spatial point the dynamics is that of a homogeneous (but anisotropic) cosmology, and

that each spatial point’s dynamics decouples from the dynamics of the other points, so

that the singularity dynamics is local. Furthermore, since the most general dynamics for

homogeneous, anisotropic cosmologies is the oscillatory dynamics of the Bianchi type

IX (Mixmaster) spacetime [267, 293], BKL singularities are oscillatory. In addition,

the terms in the field equations due to the anisotropy blow up faster than those of the

stress-energy (except for scalar field matter) and so the singularity is well described by
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the vacuum field equations. In summary, in the BKL picture singularities are spacelike,

local, and oscillatory, and “matter doesn’t matter.” But is the BKL picture right?

Objections were raised in [13] including the fact that synchronous coordinates based on

a singularity cannot be assumed to be smooth, and that consistency of an asymptotic

scheme with the field equations does not preclude the possibility of different asymptotic

regimes that are also consistent with the field equations; nor does it mean that a general

evolution towards a singularity gets itself into that asymptotic regime.

In order to resolve these questions, Berger and Moncrief [29] (and later several of

their collaborators [28]) embarked on a program of numerical simulations of spacetime

singularities. The idea was to pick some (fairly general) initial data, numerically

evolve it towards the singularity, and see whether the evolution accorded with the BKL

conjecture. As with many research programs in numerics, one starts with situations

with symmetries and then gradually works towards the general case of no symmetry.

Berger and Moncrief started with the Gowdy spacetimes [160], which have two spacelike

Killing vectors. (A special class of Gowdy spacetimes, where the Killing vectors are

hypersurface-orthogonal, had been treated mathematically by Isenberg and Moncrief

[186] and shown to be well described by the BKL picture). Aside from their symmetries,

one feature of the Gowdy spacetimes, that makes them less challenging to study, is that

they only undergo a finite number of BKL oscillations. The Berger-Moncrief simulations

showed that the BKL picture is a good description of singularities, however they also

uncovered a new complication that is now called “spikes.” These are spatial points

where the dynamics is sufficiently different from those of neighboring points to give

rise to a steep spatial feature of ever narrowing width. These spikes are a challenge to

the numerics, and also a challenge to obtaining a mathematical proof that the Gowdy

spacetimes satisfy the BKL conjecture. Nonetheless, despite these difficulties, such a

proof was finally obtained by Ringström [262].

Berger and Moncrief went on to numerically simulate U(1) spacetimes [30] which

have only one spatial symmetry, and obtained results in agreement with the BKL picture.

Finally, the general case with no symmetries was simulated in [140] using a somewhat

different method based on the scale invariant tetrad system of [310]. The results of

[140] agree with the BKL picture, however with not enough spatial points to resolve the

spikes. Work to improve this simulation to resolve the spikes is in progress.

For results on the numerical studies of singularities see the review [27] and references

therein.

6.4. Null singularities

Though the BKL picture is consistent with the Einstein field equations, and is a good

description of at least some singularities, there remains the possibility of other pictures,

also consistent with the field equations and describing another class of spacetime

singularities. Such a picture was developed by Poisson and Israel [258] based on the

properties of inner horizons of black holes. The inner horizon of a Reissner-Nordström
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black hole is a null hypersurface and is unstable in the sense that small perturbations

blow up on the horizon. Poisson and Israel argue that these perturbations would turn

the horizon into a singularity, but that it would retain its null character. Furthermore,

since the Kerr metric also has a null inner horizon, and since the black hole uniqueness

theorems tell us that a general black hole settles down to the Kerr metric, the picture

of [258] should be a good general description of (at least part of) the singularity inside

a black hole. The null singularity picture is supported by general arguments [243],

numerical simulations [46] and mathematical results [78]. If both the BKL picture and

the null singularity picture are correct, then an observer who stays with the star as it is

collapsing should encounter a BKL singularity, while an observer who enters the black

hole long after it forms should encounter a null singularity.

6.5. Black strings

The study of string theory has led to a wide consideration of the properties of general

relativity in more than 4 spacetime dimensions, and in particular to the study of

higher dimensional analogs of black holes. One of the simplest such analogs is the

5 dimensional black string, which is simply the metric product of S1 and the 4

dimensional Schwarzschild spacetime. Though the Schwarzshilid metric is stable to

small perturbations, it turns out the the black string is unstable [161]. This gives rise

to the question of what is the endstate of a perturbed black string. Based on entropic

considerations, it was argued in [161] that the black string would pinch off to become

separated 5 dimensional black holes. However it was shown in [184] that any such pinch

off would necessitate the formation of a naked singularity. Do black strings violate

cosmic censorship? To resolve this question, numerical simulations of the evolution of

a perturbed black string were performed [59, 211]. The result of the simulations is

that the unstable black string undergoes a cascade of formation of ever smaller spatial

structures finally resulting in a pinch off in a finite amount of time. Thus black strings

form naked singularities! We are thus left with the odd situation that the best evidence

we have at this point indicates that cosmic censorship holds in 4 spacetime dimensions

but is violated in 5 spacetime dimensions.

7. Long-term impact of the theorem

Many of the developments instigated by [248] and the singularity theorems have been

already discussed or mentioned, such as cosmic censorship, causality theory, global

hyperbolicity and Cauchy hypersurfaces, domain of dependence, conformal infinity,

or black hole uniqueness theorems. The ideas behind the (proofs of the) singularity

theorems have been applied to several important results in GR, such as the positive

mass theorem in its original version [272, 273] —as argued in [183]—, or more recently

in [64] (for a restricted class of spacetimes) using the Lorentzian splitting theorems [129].

Similarly, in [3] the global structure of spacetimes with positive cosmological constant
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under the assumption of the existence of the conformal compactification is analyzed

deriving strong restrictions on the topology of space by using standard arguments taken

from singularity theorems.

In this section we would like to put the emphasis on three important lines of research

that, in one way or another, have their origin in the outstanding paper [248] and have

become branches of GR by themselves. These are: boundaries of spacetime, trapped

submanifolds, and isoperimetric inequalities and the “Hoop conjecture”.

7.1. Space-time boundaries and conformal diagrams

Singularities clearly reach, or come from, the edge of space-time. This is some kind of

boundary which is not part of, but is accessible from within, the space-time. Thus the

necessity of a rigourous definition of the boundary of a space-time. This boundary may

even have relevance for string theory and the famous AdS/CFT correspondence, see

[223, 224].

Penrose himself started this quest with the introduction of conformal infinity and

conformal compactification [245, 246, 249, 119]. The basic idea is to implant the space-

time into a larger Lorentzian manifold by a conformal embedding, which ensures that

the causal properties are invariant. If the original manifold obtains a boundary in the

larger one, then this is defined as the conformal boundary. This allows one to treat

properties of infinity, and in particular to study the properties of radiative space-times.

Moreover, the boundary, being a subset of the larger manifold, inherits causal properties

itself so that it acquires attributes which allow one to place it into the future or past,

and to call it spacelike, null or timelike. Using these developments Penrose was able

to produce explicit expressions for the gravitational power radiated “at infinity” by an

isolated system as an integral “there” [249] in a fully coordinate-independent geometrical

manner, see for further details [119, 294].

The conformal compactification can be carried out for spacetimes such as de Sitter

or the Friedman models. This showed that singularities such as the “creation time” are

part of the boundary, and thereby they also inherit some causal properties. In general,

however, the full conformal compactification is a chimera. Nevertheless, Friedrich has

been able to establish a procedure such that it is possible to write down a set of equations,

called the conformal field equations, that allow one to treat the problem of the existence

of solutions given data at infinity as well as other relevant issues concerning conformal

infinity, see e.g. [123, 122, 124, 125, 126] and for a review [119].

Even if the full conformal compactification is not feasible, sometimes it is possible

to perform the conformal compactification of two-dimensional subsets of the space-time

providing relevant information. This is the case of spherically symmetric spacetimes

where one can safely ignore the angular part of the space-time and deal only with the (2-

dimensional) orthogonal planes. Similarly, one can concentrate on particularly relevant

2-dimensional surfaces (ergo conformally flat) of any given spacetime. In these cases we

can draw two dimensional pictures, called Penrose diagrams [246, 249] or conformal
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diagrams, obtaining information about singularities, infinity, and the global causal

structure of the space-time. A paradigmatic example is the diagram of Kerr’s space-

time axis of symmetry, first found by Carter [51], see also [173]. These extremely useful

representations of spacetimes have been used largely in GR [173, 316, 282] and, today,

they are routinely drawn in many papers and extensively utilized in live discussions

among scientists working on gravitation.

Once the definition of a singularity as an incomplete curve was settled, Geroch

started a new line of research concerning boundaries. He introduced the geodesic

boundary, or g-boundary, building equivalence classes of endless incomplete geodesics

and a notion of proximity between them [146]. A good property of the g-boundary is

that a metric structure —and thus some local properties of certain singularities— can

be defined sometimes. Unfortunately, the g-boundary has a number of problems and

does not consider non-geodesic curves, see [267, 139] and references therein. A more

complete structure is obtained with the bundle boundary or b-boundary due to Schmidt

[270, 271], based on the completion of a Riemannian metric defined on the frame bundle

of the space-time. The difficulties for applying this construction are enormous and,

furthermore, the cases explicitly computed have led to highly unexpected results. Yet

another program was launched in [277] with the definition of the abstract boundary

or a-boundary. This is a very general framework, actually defined for any manifold

independently of having a connection or a metric, that intends to collect every possible

boundary point arising in all the envelopments of a given manifold. In the case of

spacetimes, the boundary points can be classified by using appropriate families of curves

with definite properties (such as geodesics or others), leading to (possibly directional)

singularities, points at infinity, and some other cases [277]. Another definition of

boundary was given in [138] combining the idea of envelopment with the original idea

of conformal embedding but using the novel concept of isocausality, leading also to a

generalization of conformal diagrams. This approach is more versatile than the original

conformal one, but there are some subtleties [115] that are yet to be understood.

Probably the most important approach was put forward in [151] with the definition

of the causal boundary or c-boundary, improving on previous similar ideas that appeared

in [278]. The idea behind the c-boundary construction is to use the future or the past

of endless curves which, somehow intuitively, approach either singularities or points at

infinity. The set of all (indecomposable into smaller sets of the same form) past and

future sets can be considered as a completion containing all points in V4 plus the c-

boundary. Some identification procedure must then be used to remove duplication of

boundary points, and this may lead to great difficulties, see also [173]. The c-boundary

then entered into a history of improvements too large to be detailed here, see [223, 139],

though perhaps all the issues have been finally settled, see [116].

For a more complete discussion on space-time boundaries up to 2005 see the

review [139], and for the more recent advances and the latest on the c-boundary, check

[113, 114, 116, 117] and references therein.
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7.2. Trapped submanifolds

Indubitably, the most important legacy of the 1965 singularity theorem is the

fundamental notion of closed trapped surface, a certainly prolific idea with many

applications. It is not only very useful in the general analysis of gravitational collapse, in

the formation of black holes [2, 17, 18, 19, 33, 90, 79], and in cosmic censorship, numerical

relativity (section 6) and isoperimetric inequalities (subsection 7.3), it has also become

an object of interest for mathematicians —see for instance the use of trapped surfaces to

prove the decay rate of gravitational radiation flux [80]—and it has evolved into a richer

fauna of interesting “trapped-like” submanifolds with many geometrical and physical

implications.

As remarked several times in this paper, trapped surfaces manifest themselves as

having a “wrong” causal character of a specific vector field orthogonal to the surface:

“the gradient of r is timelike”, where 4πr2 is the area of the surface. This actually leads

to the best definition of trapped surfaces in general. We only have to identify the proper

vector field whose causal character is going to determine whether or not a given surface

is trapped. It turns out that this is a well-known vector field called the mean curvature

vector Hµ, [202, 228, 240, 283]. One virtue of this characterization is that it can be

used for imbedded submanifolds of any dimension –and not only for co-dimension two,

as has been traditionally the case.

For the purposes of what follows, we are going to deal with a n-dimensional

space-time of Lorentzian signature (−,+, . . . ,+). Let ζ be a connected (n − m)-

dimensional submanifold and let us denote by {eµA} a basis of the vectors tangent to ζ

(A,B, . . . = m+ 1, . . . , n), so that the first fundamental form of ζ reads

γAB ≡ gµν |ζ e
µ
Ae

ν
B.

We assume that γAB is positive definite wherefore ζ is spacelike. Any nµ defined on ζ

and orthogonal to the tangent vectors

nµe
µ
A = 0

is called a normal vector to ζ. At each point on ζ there arem linearly independent normal

vectors. If m > 1 all of them can be chosen to be null. The orthogonal tangent/normal

splitting of the tangent spaces to ζ leads to the standard formula [202, 240]:

eµA∇µe
ν
B = Γ

C

ABe
ν
C −Kν

AB.

Here Γ
C

AB = Γ
C

AB are the symbols of the Levi-Civita connection ∇ of the first

fundamental form γAB, while Kν
AB = Kν

BA is called the shape tensor (or second

fundamental form vector) of ζ. Observe that Kν
AB is orthogonal to ζ. Its component

along any normal nµ

KAB(~n) ≡ nµK
µ
AB = −nµeνA∇νe

µ
B = eµBe

ν
A∇νnµ
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is called the second fundamental form with respect to nµ of ζ. The shape tensor enters

in the fundamental relation

eµAe
ν
B∇µvν |ζ = ∇AvB + vµ|ζKµ

AB (11)

where, for all vµ we denote by vB ≡ vµ|S eµB its projection to ζ.

The mean curvature vector of ζ is the trace of the shape tensor [240, 202, 228, 283]

Hµ ≡ γABKµ
AB

where γAB is such that γACγCB = δAB. By definition, Hµ is orthogonal to ζ. Its

component along any normal nµ

θn ≡ nµH
µ = γABKAB(~n) (12)

is the trace of the corresponding second fundamental form and is called the expansion

of ζ along nµ.

To connect with the standard definition of trapped surface using sign of expansions,

consider the traditional case of co-dimension m = 2. Then, ζ possesses two independent

normal vector fields that can be chosen to be future-pointing and null everywhere.

Calling them kµ±, they obey

k+
µ e

µ
A = 0, k−µ e

µ
A = 0, k+

µ k
+µ = 0, k−µ k

−µ = 0.

Adding a normalization condition k+µk
µ
− = −1, there still remains the boost freedom in

the orthogonal plane to ζ

~k+ −→ ~k′+ = σ2~k, ~k− −→ ~k′− = σ−2~k− . (13)

The mean curvature vector of ζ can then be written in this null normal basis

Hµ = −θ−kµ+ − θ+ kµ−

with θ± = θk± , called the (future) null expansions. They correspond to those previously

introduced in (8). Even though θ± are not invariant under the boost transformations

(13), Hµ is invariant.

The definition of (future) trapped surfaces given in (8) demand that both θ±

are negative. This is obviously equivalent to Hµ being timelike and future directed.

Consequently, one can reformulate geometrically the notion of trapped surface with

the causal character of the mean curvature vector. This is sensible, because the mean

curvature vector measures the variation of the area of ζ (in general, its “(n − m)-

volume”) along directions orthogonal to ζ. To fully close the relationship with the

traditional cases, one should check that Hµ is simply the “gradient of r” in those cases.

This can be done in several ways, for instance, by using the explicit formula for Hµ

given in [283] in adapted coordinate systems.

We arrive at the definition of trapped submanifolds, and their many avatars. A

spacelike submanifold ζ of any dimension is said to be
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• future trapped if Hµ is timelike and future-pointing everywhere on ζ,

• weakly future trapped if Hµ is future-pointing causal everywhere on ζ

• marginally future-trapped if Hµ is future-pointing and points consistently along one

of the null normals kµ± all over ζ

• minimal in the extreme case with Hµ = 0 everywhere on ζ

There are always dual definitions to the past. For each definition there is an

equivalent characterization in terms of the null expansions, see Table 1 for the salient

case of co-dimension m = 2. Observe that the extreme case where n = m (ζ is a point)

can be included somehow in the definition of trapped submanifold if the expansion

along every possible null geodesic emanating from ζ becomes negative. This captures

the concept of a point with reconverting light cone as appears in Theorem 3.

Once we know that the causal orientation of the mean curvature vector rules

whether or not a submanifold is trapped, a symbolic notation for the causal orientation

of Hµ becomes very useful. Using an arrow to denote Hµ and denoting the future as

the upward direction and null vectors at 45o with respect to the vertical, the symbolic

notation was introduced in [284]:

Hµ Causal orientation

↓ past-pointing timelike

↙ or ↘ past-pointing null (∝ ~k+ or ~k−)

← or → spacelike

· vanishes

↗ or ↖ future-pointing null (∝ ~k+ or ~k−)

↑ future-pointing timelike

The characterization using these arrows is shown in table 1 too.

Table 1. The main cases of future-trapped surfaces, characterized by the null

expansions and the causal orientation of the mean curvature vector.

Symbol for Hµ Expansions Type of surface

· θ+ = θ− = 0 stationary or minimal

↑ θ+ < 0, θ− < 0 future trapped

˙ ↘ θ+ = 0, θ− ≤ 0 marginally future trapped

˙↘

θ+ ≤ 0, θ− = 0 marginally future trapped↙˙↘↑ θ+ ≤ 0, θ− ≤ 0 weakly future trapped

In asymptotically flat situations, for example for black hole spacetimes, only the

sign of the outer expansion —that pointing towards infinity— is relevant [173, 316].

These can be generalized to cases where, for instance, one of the expansions is selected

or favored (say because it vanishes, or has a sign). Independently of whether or not this

selected direction coincides with any particular outer or external region to the surface,
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it has become customary in the literature to declare it to be “outer”, and then the

nomenclature speaks about “outer trapped”. See however [175] for a more elaborated

discussion. Thus, (marginally) +-trapped surfaces are usually referred to as (marginally)

outer trapped surfaces ((M)OTS) and similarly for the ‘−’ case. The main possibilities

are summarized in Table 2.

Table 2. The main cases of +-trapped, usually called “outer trapped”, surfaces.

Symbol for Hµ Expansion Type of surface

←↖↑ θ+ < 0 half converging or outer trapped (OTS)

↙̇
↗

θ+ = 0 null dual or marginally outer trapped (MOTS)

←

↙˙↘↑
↙ θ+ ≤ 0 weakly outer trapped (WOTS)

MOTS have been extensively studied in recent years [4, 5, 7, 50], with relevant

results for black holes (in which case they are commonly called “apparent horizons”

[173, 316]) and the existence of marginally (outer) trapped tubes. These are

hypersurfaces foliated by M(O)TS. A key result is that the boundary of the region

containing OTS in a given spacelike hypersurface turns out to be a smooth MOTS

[203, 7]. There are key differences between MTSs and mere MOTSs, as the latter

need an outer notion and they are usually required to enclosed a piece of a spacelike

hypersurface; for examples and an enlightening discussion see [23]. In the case that

the foliating surfaces are truly marginally future trapped the mentioned tubes were

introduced in [175] and called “future trapping horizons”. They are considered as

good candidates to replace the event horizon of black holes [170, 173, 316], which

happens to be teleological: the event horizon depends on future causes and is thus

too globally defined —ergo physically of little relevance [10]. The future trapping

horizons, on the other hand, are defined quasilocally, hence they are more interesting

to capture the concept of a (evolving or forming) black hole that exists now. Future

trapping horizons have been much studied, leading to thermodynamical properties, such

as surface gravity/temperature, area/entropy law, etcetera, generalizing that of event

horizons for black holes [10, 175, 176, 159, 39]. For their characterization from a 3+1

perspective or the physical aspects concerning them, check [190, 238, 38]. One can place

restrictions on the topology of M(O)TS, classical results in this direction were proven in

[170, 236], and more recent results have been found in [4, 5] and, in general dimension,

in [132, 131]. MOTS can also be searched for in numerical evolutions of collapsing

solutions [192, 297]. Indeed, the presence of OTS on spatial slices is the signal used in

numerical relativity to detect black holes [14]. One also has to take care with (M)OTS

when devising initial data sets [322].

In [175] two versions of future trapping horizons were introduced, outer and
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inner. Their distinction is related to the stability of the foliating MTS, a concept

first considered in [236] and then put on a mathematical firm basis in [4, 5], where

the stability operator for MOTS was first described. This is analogous to the standard

stability operator for minimal hypersurfaces in Riemannian spaces. Recall that minimal

hypersurfaces extremize the area functional, and they are locally characterized by the

vanishing of the mean curvature. A fundamental question concerns then the second

variation of the area functional, defining the stability of the minimal hypersurface.

This permits to define a self-adjoint elliptic operator on the hypersurface whose (real)

spectrum governs the mentioned stability. This operator happens to be directly related

to the first variation of the (vanishing) mean curvature. Marginally outer trapped

surfaces, on the other hand, have a null mean curvature vector with one of the

null expansions vanishing identically. They also extremize the area functional in the

direction of the mean curvature vector, but the second variation is negative so that

they are unstable with respect to this functional. Nevertheless, considering that in

the Riemannian minimal case the operator was also associated to first variations of the

vanishing mean curvature, one can consider the perturbation of the vanishing expansion;

this variation leads to another elliptic stability operator analogous to the previous one

but with the important difference that it is not self-adjoint in the natural sense. Despite

this fact, a principal real eigenvalue can be defined and its sign rules the stability of

the MOTS [4]. A key fact here is that the second variation in the null mean curvature

direction turns out to be algebraic, so that the entire variation of the vanishing expansion

is ruled by a unique differential operator. This therefore translates to co-dimension two

marginally outer trapped submanifolds in higher dimensions. The parallelism between

MOTS and minimal hypersurfaces in Riemannian spaces can be explored further, and

one can actually solve the Plateau problem for MOTS, that is, the existence of MOTS

spanning a given, prescribed, boundary [95].

After pioneering work by Israel [187], in [4] stable MOTS are proven to belong

to dynamical horizons, which are spacelike future outer trapping horizons [10, 190].

Actually, they belong to many such horizons, one for each chosen foliation by slices in

the spacetime. One ends up with a pletora of MTT, which interweave each other in very

complicated ways [11], leading to a problem of high non-uniqueness when talking about

thermodynamical and other properties of locally defined black holes [10, 11, 26, 37].

Nevertheless, each MTT has a unique foliation by MTSs [11] —unless the tube is null

and constitutes an isolated horizon [10], in which case any cut of this null hypersurface

is a MTS. Furthermore, stable MOTS classically perpetuate as such for some time [6].

Despite their local definition and their interesting quasilocal properties, closed

trapped surfaces are also drastically non-local in many ways. It is known that they

cannot be seen in its entirety in the Schwarzschild solution [318], however some of them

can be actually fully seen in the Oppenheimer-Snyder collapsing model, see e.g. [24]. It

might be the case that trapped surfaces associated to stable MTT are not fully visible

while those associated to non-stable ones are. More dramatically, in some examples

one can prove that closed trapped surfaces extend far away from the intuitive region
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containing the black hole, even reaching flat portions of the spacetime whose entire past

is also flat [25]. This has been termed as the clairvoyance property of trapped surfaces

[26], and raises the question of what is the boundary of the region in spacetime with

closed future-trapped surfaces. Such an innocent-looking and seemingly simple question

has turned out to be very difficult to answer: not even in spherically symmetric cases

this has been solved hitherto. The new concept of core of a black hole has thereby come

up: a core of black hole is a minimal region that must be removed from the spacetime

in order to get rid of all closed future-trapped surfaces [26]. In other words, this is

the indinspensable region that sustains the black hole. There are some hopes that the

concept of core may lead to the characterization of a preferred future trapping horizon.

As mentioned in subsection 5.1.3 the formation of closed trapped surfaces in the

evolution of realistic initial data has become an important area of research. A pioneering

work in this respect is [90], then followed by many others such as [2] were the stability was

also analyzed. In [63] the existence of open sets of initial data, termed “short pulses”,

leading upon evolution to the formation of future-trapped surfaces was shown rigorously.

An important improvement has been recently achieved in [196] assuming (more general)

initial conditions given on a null hypersurface. The proof requires estimates on just the

first derivative of the curvature and weaker curvature controls.

Finally, the concept of closed trapped surface has also influenced the field of

“analogue gravity” [12], where quantum effects in curved space-time are modeled by

means of different physical systems, specially regarding the formation of “horizons” in

fluid models. This was first considered in [311] and much elaborated in [315], see [12]

for a review.

7.3. Isoperimetric inequalities and the “hoop” conjecture

As commented in subsection 6.1, given an asymptotically flat initial data hypersurface

Σ whose total (ADM) mass is M , Penrose argued [252] that if the data contains an

apparent horizon S—this is essentially a MOTS, see above—, and if the inequality

Area(S) ≤ 16π
(
GM/c2

)2
= (in geometrized units G = c = 1) 16πM2 (14)

(now called the Penrose inequality) were violated, then the spacetime that comes

from evolving the initial data would contain a naked singularity, implying a lack of

predictability unknown in classical physical theories, or referring to subsection 6.1, a

visibility of quantum effects in macroscopic gravitational collapse. Thus initial data

violating the Penrose inequality would constitute a counterexample to weak cosmic

censorship, while a proof of the Penrose inequality would constitute evidence in favor of

weak cosmic censorship. One can also use similar arguments if the initial data set Σ is not

asymptotically flat but rather intersects future null infinity (asymptotically hyperbolic

data) by using the non-decreasing [36, 269] Bondi mass for M . Early proofs for this case

[219] were incomplete as shown in [31], where some advances, still inconclusive, were

presented. There are some subtleties concerning the lefthand side of (14), as pointed
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out in [189] and explicitly shown in [183, 22], so that actually “Area” there means “the

minimal area of any surface enclosing completely S within Σ”.

The heuristic argument Penrose used in [252] can be phrased in several different

manners —see for instance [225, 222, 192]— invariably invoking the singularity theorems

to derive the inevitability of singularities whenever closed trapped surfaces are formed.

The inequality (14) provides a lower bound to the mass of black hole spacetimes, and

thereby is related to —and strengthens— the positive mass theorem [272, 273] of general

asymptotically flat spacetimes. In this sense, the rigidity part of the positive mass

theorem —the mass vanishes if and only if the initial data evolves into flat Minkowski

space-time— has a counterpart in the black hole case: equality holds if and only if the

initial data originates the Schwarzschild space-time with the corresponding mass.

Neither a proof of the Penrose inequality nor a counterexample has been found in

the general case, and even in spherical symmetry only a weaker version —using the

energy rather than the mass— has been shown to hold [177]. However, (14) has been

proven in the so-called Riemannian case [185, 47] which, from the space-time viewpoint,

describes a time-symmetric situation, using the slice Σ of time symmetry (initial data

with zero extrinsic curvature), for further details see [225, 48]. In this time-symmetric

situation the surfaces to be used are actually minimal surfaces and the inequality (14)

is sometimes referred to as an isoperimetric inequality [152, 153]. This is reminiscent

of the classical isoperimetric problem: to determine in Euclidean space a plane figure

of the largest possible area whose boundary has a specified length (the perimeter). In

Euclidean space this leads to the classical isoperimetric inequality 4πA ≤ L2 relating

the length L of a closed curve and the area A of the planar region that it encloses,

equality holding only if the curve is a circle.

The inequality (14) has the virtue that everything depends only on the initial data

set Σ, and thus it has a neat geometrical content that can be studied independently

of weak cosmic censorship or of any other physical requirement. This also follows

from another independent argument presented by Penrose [252] using the mass M of a

thin shell collapsing into flat space-time at the speed of light. This surely produces a

singularity, hence under weak cosmic censorship a black hole must form with an event

horizon dressing it. One can then argue that (14) has to hold where now M is the

mass of the null shell. By using energy conservation across the shell, all the quantities

involved in (14) can be computed directly in flat space-time, thus leading to a pure

geometrical inequality for surfaces embedded in Minkowski space-time [154]: the length

side of the inequality is simply the integral over S of its outer null expansion θ+. Such

constructions have been analyzed in [154, 244, 307, 306], proving that the inequality

holds for S lying on constant time hyperplanes and, using a result in [309], this can be

extended to all mean convex bodies in Euclidean space. A claim was made [154] that

this would settle the inequality for arbitrary surfaces but this cannot be true, as clearly

explained in [225].

There exist stronger versions of the Penrose inequality involving angular

momentum, electric charge, and/or the cosmological constant Λ, see [225, 296, 192]
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and references therein. Some of these require, in order to make sense, that particular

expressions under a square root are non-negative, providing some sharper versions of

the positive mass theorem. In particular, the inequalities [156, 170, 85, 81]

M ≥ |Q|, M ≥
√
|J |

have been put forward, where Q is the total electric charge of the initial data set Σ and

J its total angular momentum (in geometrized units). The first of these inequalities was

proven in [156, 66], while the second only makes sense if the total angular momentum

is well defined, that is, in axially symmetric situations [81, 83]. In this case, it has been

shown to hold for vacuum and maximal initial data sets when the MTS S is connected

[82, 65]. This also led to the so-called area-angular momentum inequality [8]

Area(S) ≥ 8π|J |

which was proven in [86]. It also holds for totally geodesic null hypersurfaces foliated by

MOTS [226]. Actually, a local version for stable sections S of future trapping horizons

was found in [191], see also [290] for the inclusion of the cosmological constant. Area

inequalities involving charge can also be derived [84, 128]. For further details and a

lengthy discussion on these matters see [83].

The very same lightlike thin shell construction in flat space-time [252] discussed

above has also been used [244, 307] to test yet another inequality concerning black

holes: the hoop conjecture. This was originally formulated by Thorne in a (deliberately)

vague way as [298, 233]

Black hole horizons form when, and only when, a mass M gets compacted

into a region whose circumference in every direction is C . 4πGM/c2.

This statement is, to say the least, imprecise: notice the symbol .. For a discussion of

the many difficulties and the main problems that arise when trying to give a rigorous

meaning to this conjecture, see [317, 286] and references therein. Yet, the hoop

conjecture has somehow managed to survive and, in a sense, be successful. It was settled

in spherical symmetry [33, 34], and discussed in more general cases in [222]. A related

mathematical result is that of [274] where upper bounds for a radius of concentrated

matter and lower bounds for its mass density are linked. This was used in [70] to

find conditions for the formation of future-trapped surfaces, however, examples in [33]

demonstrate that the underlying criteria are rarely met.

The main physical idea here is that black holes are extremely localized objects, so

that their energy/matter content must be severely compacted in all spatial directions.

Trying to make precise this idea is difficult, though. Some specific formulations were

given in [112], and a more recent precise one in [155, 77]. A mathematical viable

reformulation of the conjecture have been presented in [286], where a long list of

references can be consulted.
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8. XXI century singularity theorems

Are singularity theorems something of the past? The answer to this question is a

categorical ‘no’. The purpose of this last section is to give an idea of what is going on,

of the new directions that are being explored, and of what is yet to be confirmed or

improved. The whole subject has evolved and new versions, or new types, of singularity

theorems are being built to take into account recent physical features such as higher

dimensional theories, a (positive) cosmological constant, quantum effects, inflation,

averaging, etc.

8.1. Mathematical advances

To start with, and as remarked in the discussion immediately after “Theorem” 4, it

would be convenient to prove the theorems under milder differentiability assumptions,

for instance if the first derivatives of the metric are Lipschitz functions, see the discussion

in [282]. An important pre-requisite in that direction has been recently achieved in

[229, 206], raising some optimism in this line of research.

Recently two theorems similar to Penrose’s one, but applying to infinite-space

(open) cosmological spacetimes in which localized black holes may have formed were

proven in [313]. The idea is to assume that a closed trapped surface lies partly outside

a black-hole horizon —something possible in a cosmological, non-asymptotically flat,

context. Unlike the original theorem, the new theorems do provide some information

on the location of the singularities. One conclusion is that the Universe should contain

causally disconnected regions.

Comparison results concerning the area and volume of sets can be applied to re-

derive singularity theorems [308]. Singularity theorems requiring the existence of an

OTS, or a MOTS, rather than true (marginally) trapped surfaces have also been recently

found [6] even considering some generalizations of the concept of MOTS [96, 74]. One

should also consider what happens when one or more of the hypotheses in the singularity

theorems are relaxed, or suppressed altogether. This has recently been addressed in [75],

trying to find theorems with milder conclusions, and considering the “rigidity” part of

the singularity theorems, see also [134]. This may open new lines worth to be explored.

8.2. Quantum effects

A very important line of research arises from the tension between the singularity

theorems and the (yet unfound) theory of quantum gravity. It is widely accepted that the

existence of classical singularities signal a breakdown of the classical theory at extreme

conditions, which is precisely when gravitational quantum effects will become relevant.

Thus, there is a need to clarify if the singularity theorems, or part of them, can survive

when entering into a quantum regime, or if they then simply vanish altogether. For a

general discussion, see [35]. A first step towards the analysis of singularity theorems in

this respect is the weakening of the “energy conditions” —also relevant in the classical
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regime—, that is to say, finding an appropriate version of the curvature condition in

the theorems. Early results in this direction include the theorems based on averaged

energy conditions [303] as discussed in subsection 5.1, which were used to deal with the

quantum violations of the energy conditions in [264], later improved in [265] . A larger

discussion can be found in [110] (and references therein) and has been recently newly

considered in [109], where an analysis of Raychadhuri-like equations is performed proving

that it is viable to have energy-momentum tensors which fail to satisfy even averaged

energy conditions as long as an appropriate version of them —with an exponential

damping factor— are in place. This leads to a proof of a version of the Penrose

singularity theorem allowing for global violations of the energy conditions. In [118]

it was argued that one may also need to go beyond semiclassical theories and take into

account the quantum fluctuations of the space-time itself, adding extra difficulties to

possible quantum singularity theorems. One problem here is that, classically, one relies

on pointwise focusing of geodesics which cannot be exactly true (despite the smallness

of the fluctuations) in a quantum regime. The notion of closed trapped surface can

also be generalized and adapted to quantum situations [319]. The Penrose singularity

theorem can also be proven under these weaker circumstances.

8.3. Inflation and Λ

There is also the question of inflation in the past of the Universe. Effectively this implies

a violation of the curvature condition in the theorems, and thus one can consider the

possibility that actually the Universe is past geodesically complete. This is not the case

if the weak energy condition (positivity of energy density) holds [41, 43, 44], as already

mentioned in subsection 5.1, but as discussed in the previous paragraph the weak energy

condition can be violated in inflationary models due to quantum fluctuations [45]. This

was addressed in [42] with the result that, as long as an appropriate averaged Hubble

parameter is positive, violations of the weak energy condition are not enough to avoid

past incompleteness of causal geodesics.

Inflation as well as the acceleration of the expansion of the Universe are closely

related to the existence of a positive cosmological constant Λ > 0, which is just the

wrong sign for the curvature condition (6) used in the focusing effect and, ultimately,

in most singularity theorems. Thus the need to direct some efforts to incorporate an

explicit Λ > 0 in the singularity theorems. For the case of compact slices (closed case)

this was studied in [130], see also [3], proving past geodesic incompleteness under some

restrictions. The classical results in [136, 137, 210] have been reconsidered in higher

dimensions where the number of topological possibilities increases drastically [73]. This

is related to the topology of space [49] and the topology of M(O)TS [170, 132, 131], and

another theorem of this kind but using closed trapped circles was presented in [133].
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8.4. Averages

Both a Λ ≥ 0 and averaging can be combined to obtain another form of singularity

theorems for open cosmological models. As mentioned in subsection 5.1.3 there are

physically acceptable globally hyperbolic geodesically complete solutions of the field

equations (1) [280, 55, 266, 282]. Some of these solutions cannot describe the interior of

finite stars: for perfect fluids this would require a timelike hypersurface with vanishing

pressure, and this just does not happen in the solution [280], which also has everywhere-

expanding Cauchy hypersurfaces [55, 285]. Thus one wonders which conditions must

a space-time satisfy to be geodesically complete. For stationary globally hyperbolic

spacetimes this was answered in [142], and the timelike component of the Ricci tensor

(for the preferred Killing static observer) behaves as ∼ 1/ρ2 where ρ is a spatial distance

between any two events. This implies a fall off of the curvature for widely separated

events. But, what about the dynamical, non-stationary, case? An important input into

this problem was provided by Raychaudhuri himself [261], who considered space-time

averages of the physical quantities. He showed that non-rotating, singularity-free, open

cosmological models, such as that in [280], must have vanishing space-time averages of

the energy density and other relevant physical quantities. Unfortunately, this is also the

case for singular spacetimes such as the standard Friedman models as was immediately

noticed [268, 281]. Nevertheless, Raychaudhuri was pointing into a very interesting

direction: averaging of physical quantities. The key point is to consider spatial, rather

than space-time, averages as conjectured in [281].

One can thus prove [285] that if there is a non-compact Cauchy hypersurface Σ

whose expansion is positive everywhere (with asymptotic non-oscillatory behavior, a

technical condition [193]), the energy density and the scalar curvature on Σ are non-

negative on average, Λ ≥ 0 and (6) holds along the geodesic vector field orthogonal to

Σ, then the non-vanishing of any of the following scalars

• Λ

• the averaged energy density on Σ

• the averaged scalar curvature of Σ

implies that all timelike geodesics are past incomplete [285, 193]. Hence, a clear, decisive,

difference between singular and geodesically complete globally hyperbolic expanding

open cosmological models is that the latter must have a vanishing spatial average of

the matter variables. One could thus say that any geodesically complete model is not

“cosmological” —if we believe that the Universe is described by a not too inhomogenous

distribution of matter. This is, on the whole, a very satisfactory result.

8.5. Trapped submanifolds of arbitrary dimension: extra space dimensions

From the discussion in subsection 7.2 we know that the concept of being trapped can

be associated to submanifolds of any dimension in space-time, and not only to surfaces

in 4 dimensions (or co-dimension 2 submanifolds in arbitrary dimension n). Thus, a
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natural question is: why in Theorem 2 one needs to assume a closed trapped surface?

A partial answer is given by the Hawking-Penrose Theorem 3, as one can assume either

of

• a compact slice (co-dimension 1)

• a closed trapped surface (co-dimension 2)

• a point with reconverting light cones (co-dimension 4).

But, what about co-dimension 3? Why closed trapped circles do not show up in

this theorem? Actually, this question is even more relevant in arbitrary dimension

n, as the number of possibilities increase. As remarked after Theorem 3, the result

holds in arbitrary dimension n but then, why trapped submanifolds of co-dimensions

3, 4, . . . , n− 1 are missing?

This was discussed and answered in [133]: the outcome is that one can certainly

used trapped submanifolds of arbitrary co-dimension in Theorems 2 and 3 as long as

the appropriate curvature condition is assumed. The key result is provided by the

conditions to ensure the existence of focal points to the submanifold. Using the notation

in subsection 7.2, let ζ be the spacelike submanifold of any co-dimension m and nµ a

future-pointing normal to ζ. Let γ represent a geodesic curve tangent to nµ at ζ with

affine parameter u (u = 0 at ζ), and denote by Nµ the geodesic vector field tangent

to γ (Nµ|u=0 = nµ). By parallel propagating along γ the tangent vectors {~eA} we

construct a set { ~EA} of vector fields along γ ( ~EA|u=0 = ~eA). By construction gµνE
µ
AE

ν
B

is independent of u, so that gµνE
µ
AE

ν
B = gµνe

µ
Ae

ν
B = γAB. Define then P νσ ≡ γABEν

AE
σ
B

(at u = 0 this is the projector to ζ). If the expansion (12) is initally negative θn < 0

and the curvature tensor satisfies the inequality

RµνρσN
µNρP νσ ≥ 0 (15)

along γ, then there is a point focal to ζ along γ at or before the affine parameter reaches

the value u = (m− n)/θn, provided γ is defined up to that point.

It is easily checked that condition (15) reduces simply to (6) in the cases of co-

dimension 1 or 2 [133]. For co-dimension m > 2, the interpretation of (15) can be given

physically in terms of tidal forces, or geometrically in terms of sectional curvatures. In

physical terms, it is a statement about the attractiveness of the gravitational field on

average: the tidal force in directions initially tangent to ζ is attractive on average. The

Penrose singularity theorem 2 survives as it is simply replacing the closed trapped surface

for a closed trapped submanifold of arbitrary co-dimension if one uses (15) instead of

(6). Actually, just a milder averaged version of (15) is enough [133]. Similarly, the

Hawking-Penrose theorem 3 holds by assuming a closed trapped submanifold of any

co-dimension and (15).

Several applications of these generalized theorems are discussed in [133]. Here we

would just like to mention a particular one concerning the possible classical instability

of spatial compactified extra dimensions. This instability was suggested by Penrose

himself in [254]. He argued that, due to the singularity theorems, singularities may



Singularity theorems 41

develop within a tiny fraction of a second. His argument, though, needs some ad-hoc

splittings, and some restrictions on the Ricci tensor, because theorems 2 and 3 were

valid only for very few co-dimensions. Those problems can be avoided by using the

generalized theorems in [133] as it is enough that the compact extra-dimensional space,

or any of its compact less-dimensional subsets, satisfy the trapping condition while the

restriction on Ricci curvatures can be replaced by the appropriate averaged condition

on tidal forces. Hence, the basic argument of Penrose acquires a wider applicability and

requires less restrictions.

9. Concluding remark

As exemplified in the previous sections, there are many exciting and interesting ideas

being developed in several physical and mathematical areas which belong to the novel

realm created 50 years ago by the Penrose singularity theorem.

In conclusion, the fertile line of research engendered in [248] is, today, very much

alive and vibrant.
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[33] Bizon P, Malec E and Ó Murchadha N 1989 Trapped surfaces due to concentration of matter in

spherically symmetric geometries, Class. Quantum Grav. 6 961
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Notes in Logic 6, Petr Hajek ed. Berlin: Springer, 34-49

[105] Ellis G F R 2003, Cosmological perturbations and singularities, in The future of theoretical physics

and cosmology, 121–160, (Cambridge Univ. Press, Cambridge)

[106] Ellis G F R and Schmidt B G 1977 Singular space-times Gen. Rel. Grav. 8, 915.

[107] Evans C.R. and Coleman J.S. 1994 Critical phenomena and self-similarity in the gravitational

collapse of a radiation fluid Phys. Rev. Lett. 72, 1782

[108] Fayos F, Senovilla J M M and Torres R 1996 General matching of two spherically symmetric

spacetimes Phys. Rev. D 54 4862.

[109] Fewster C J and Galloway G J 2011 Singularity theorems from weakened energy conditions Class.

Quantum Grav. 28 125009

[110] Fewster C J and Roman T A 2003 Null energy conditions in Quantum Field Theory Phys. Rev

D 67 044003; erratum 2009, ibid. 80 069903

[111] Finkelstein D 1958 Past-Future Asymmetry of the Gravitational Field of a Point Particle, Phys.

Rev. 110 965

[112] Flanagan E 1991 Hoop conjecture for black-hole horizon formation Phys. Rev. D 44 2409-2420

[113] Flores J L 2007 The causal boundary of spacetimes revisited Commun. Math. Phys. 276 611–643

[114] Flores J L and Harris S G 2007 Topology of the causal boundary for standard static spacetimes

Class. Quantum Grav. 24 1211–1260

[115] Flores J L, Herrera J and Sánchez M 2011 Isocausal spacetimes may have different causal

boundaries. Class. Quantum Grav. 28 175016

[116] Flores J L, Herrera J and Sánchez M 2011 On the final definition of the causal boundary and its

relation with the conformal boundary Adv. Theor. Math. Phys. 15 991–1057

[117] Flores J L, Herrera J and Sánchez M 2013 Gromov, Cauchy and causal boundaries for Riemannian,

Finslerian and Lorentzian manifolds. Mem. Amer. Math. Soc. 226 no. 1064

[118] Ford L H 2003, The Classical Singularity Theorems and their Quantum Loopholes,

Int.J.Theor.Phys. 42 1219-1227

[119] Frauendiener J 2004 Conformal Infinity Living Rev. Relativity 7 1;
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Raumes Zeitschrift für Physik 21 326-332; English translation reprinted in 1999 Gen. Relat.

Grav. 31 2001-2008



Singularity theorems 46

[122] Friedrich H 1986 Existence and structure of past asymptotically simple solutions of Einstein’s

field equations with positive cosmological constant J. Geom. Phys. 3 101–117

[123] Friedrich H 1992 Asymptotic structure of space-time in Recent advances in general relativity
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